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Abstract—Competitiveness and rapid expansion of flexible
manufacturing system (FMS) as one of the industrial alternatives
has attracted many practitioners’ and academicians’ interest.
Recent globalization events have further encouraged FMS devel-
opment into distributed, self-reliant units of production center.
The flexible manufacturing system in distributed system (FMSDS)
considers multi-factory environments, where jobs are processed
by a system of FMSs. FMSDS problems deal with the allocation
of jobs to factories, independent assignment of job operation
to the machines, and operations sequencing on the machine.
Additionally, in many previous studies, impact of maintenance
as one of the core parts of production scheduling has been
neglected. This significantly affects the overall performance of the
production scheduling. As such, maintenance has been considered
in this paper as part of the production scheduling. The objective
of this paper is to minimize the global makespan over all the
factories. This paper proposes an Improved Immune Algorithm
(IIA) to solve the FMSDS problem. Antibody encoding adoption
explicitly represents the information of factory, job, and mainte-
nance, whilst a greedy decoding procedure exploits flexibility and
determines the job routing. Rather than s traditional mutation
operator, an improvised mutation operator is used to improve
the solutions by refining the most promising individuals of each
generation. The proposed approach has been compared with
other algorithms and obtained satisfactory results, where the
algorithm performance has been tested with several parameter
tunings.

Keywords—flexible manufacturing system, distributed system,
machine maintenance, immune algorithm.

I. INTRODUCTION

The production scheduling problems in the manufacturing
industry has for several years attracted many research initia-
tives. Advancement and development in computer technology
has promoted the way of solving production scheduling prob-
lems to a whole new level. Exact approaches are insuff cient to
handle the complex and changing environment of production
scheduling. Production scheduling involves allocating a limited
amount of resources (i.e. machine) to a number of task
over time. Signif cant numbers of feasible solutions available
from different task-resource assignments makes the production
scheduling problems one of the NP-hard problems [1]. As

such, this importance serves to encourage both practitioners
and academicians to solve the production scheduling problems
f rsthand.

High market competition and a challenging manufacturing
environment has evolved the way organization attain success
and competitive advantage. Flexible manufacturing system
(FMS) is the result of growing demand both in terms of
quantity and quality. Combinations of both eff ciency of high-
production line, and the f exibility of job shops, correspond
well with mid-volume batch production and mid-variety of
products [2]. The high investment value in FMS has increased
the importance of effective and well-rounded performance,
while utilizing resources eff ciently. Extensive studies regard-
ing FMS has been thoroughly investigated from the 1980s,
where the concern over FMS was mostly concentrated in the
area of allocation, scheduling, loading and control problem.

Production scheduling of a single-factory is devoted to
minimizing the total operating cost, completion time, and order
fulf llment of an assigned machine to process the operations
of a job. The recent trend of globalization has cultivated
the emergence of the distributed system (DS) in production
scheduling. Generally, DS can be def ned as a multi-factory
production where each factory is geographically distributed
and owns the ability to process product parts independently.
Every factory has a distinctive production line in terms of
eff ciency and constraints, which depends on machine avail-
ability, labor costs and skill, and transportation facilities. These
indirectly yield different production lead times, operating costs,
and completion times [3], [4]. An exact solution becomes
insuff cient to handle the production scheduling problem con-
sidering the different alternatives of process plan combination
in DS. As such, some of the recent work that considers these
features of FMS have been reported [3], [5], [6]. Concerning
the Flexible Manufacturing System Distributed Scheduling
(FMSDS) problem, optimization of the production schedule
involves three hierarchical problems that need to be solved
sequentially or simultaneously [7], [8]:

1) Allocation of the most suitable factory for the job
(assignment problems).
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2) Routing of the most suitable machine for each of the
assigned operations of the job within the given factory
(routing problem).

3) Sequencing the most suitable assignment of the op-
erations to machines over the time span (sequencing
problem).

In a real manufacturing environment, machine maintenance
is unavoidable. Unexpected machine breakdown (stochastic
unavailability) and scheduled preventive maintenance (deter-
ministic unavailability) are the main reasons for a machine to
be unavailable for a period of time [9]. The importance of
machine maintenance has escalated the attention of most re-
searcher because it directly affects the production rate, product
quality, machine availability and utilization ratio [4]. Nonex-
istent machine maintenance also disrupts the predetermined
planning or scheduling due to various process mismatching.
As such, the maintenance policy in production scheduling
plays a major role in perpetuating the machine availability and
utilization ratio, while maximizing the facility with minimum
cost and reducing unforeseen breakdown. To the best of our
knowledge, the f rst work addressing all the features of FMSDS
and maintenance consideration are [4], proposing Genetic
Algorithm with Dominated Genes (GADG).

Development of Immune Algorithm (IA), inspired from
the adaptive natural immune system of vertebra, has been
implemented in various ranges of problems, among them, ma-
chine learning, pattern recognition and detection, scheduling,
intrusion detection, data manipulation and analysis, evolution-
ary computation, and optimization [10], [11], [12], [13], [14],
[15], [16]. IA features that are not limited to self-organizing,
adaptivity, and uniqueness, proffer various developments of
computational models applied in business [10], [12], [16],
[17], [18], sciences and engineering [14], [15], [19], [20],
and optimization domain [11], [20], [21], [22]. Generally, IA
is renowned for its criteria of memory cells (reservation of
good solutions), high rate somatic mutation or hyper-mutation
(explorative and/or diversif cation mechanism), and receptor
editing (escaping local optima, adaptivity) [23].

Despite the available IA literatures, inspiration to under-
take this research arose from an encouraging yet challenging
opportunity to employ a renowned IA as an ideal choice
to address the underlying problems in FMSDS subject to
maintenance. The objectives of this study includes proposing
a feasible IA algorithms with guided initialization mechanism,
yielding optimal makespan while considering the impact of
maintenance inclusion.

The rest of this paper is organized as follows: the formu-
lation and constraints of the problem are described in Section
II. The algorithm overview and the proposed algorithm are
presented in Section III. Computational study performed with
the presented algorithm and its results are reported in Section
IV. Section V concludes the paper and highlights future works.

II. THE FMSDS PROBLEM

The FMSDS problem can be stated as follows: a numbers
of jobs (i) is expected to be received in the distributed network
and a suitable factory (f = 1, ..., F) will be assigned to the
job in order to generate corresponding production scheduling.
Each individual factory has a number of machines (h = 1,

2, ..., Hf ) with different eff ciencies or operating lead times
(Tijfh) in producing various product types. Each job has up to
Ni operations, and every operation can be performed in more
than one machine (not all), but must be in the same factory.
The traveling time between factory f and job i is symbolized
as Dif .

Each machine conforms to a maximum machine age (M),
where the machine age equals to the cumulated processing
time of operations. A maintenance procedure has to be carried
out right after the completion of the current operation when the
machine age reaches the threshold denoted as M, outlined in
[4]. After every maintenance, the machine age of the particular
machine will be reset to 0.

The objective of the study is to minimize the total maxi-
mum makespan of the last job operation. As such, the objective
function is def ned in (1). Completion time (Ci) is def ned as
the summation of the completion time of the last operation Ni

of job i and the delivering time between the factory f and the
job i, as def ned in (2). The decision variables are: χij denoted
true if job i is allocated to factory f ; δijfhk if operation j of
job i occupies time slot k on machine h in factory f ; and γijfh
if machine h in factory f is maintained after operation j of job
i; Once obtained, the starting time value of operation j of job i
(Sij), ending time of operation j of job i (Eij) and completion
time (Ci) can be calculated.

ObjectiveZ : min(max{Ci}). (1)

Ci = EiNi
+
∑

Difχif . (2)

The problem is subject to the following constraints:

1) Every operation can only begin after the completion
of the prior operation.

2) An operation will continue to commences until it
f nishes without any disruption.

3) Assigned time slot must be equal to the required
operation time.

4) Each operation to be carried out on a single machine
throughout the horizon.

5) each operation to be executed on a single machine at
each unit of time.

6) Each machine to handle only a single operation at
each unit of time.

7) Each job can only be assigned to a single factory.

III. AN ARTIFICIAL IMMUNE ALGORITHM FOR FMSDS

A. General IA

The IA is a “collection” of complex adaptive pattern
recognition system that mimics the natural immune system
which defends the organism’s body from foreign pathogens
(bacteria or viruses). The system is capable of recognizing
all cells (or molecules) within the organism as either harmful
(non-self-cell) or harmless (self-cell) [24]. In typical infection
process, infestation and proliferation of a pathogen within
the organism occurs. Pathogens are the correspondence of
specif c proteins (antigens). The immune cells (antibodies) are
randomly distributed throughout an immune system capable
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of recognizing antigens and killing pathogens. Additionally,
the immune system can also respond effectively to future
infections from an earlier encountered pathogen (adaptive
immunity) [1].

The clonal selection and aff nity maturation hypothesis are
used to elaborate the immune system responding to pathogens
and enhance its capability of recognizing and eliminating
pathogens [24]. Clonal selection can be def ned as the immune
system’s reaction to pathogens that invade the organism in such
a way that the immune cells are cloned and proliferated, where
some of the cloned cells become effector cells while others
with high aff nity threshold will be sustained as memory cells.
The effector cells secrete a large number of antibodies with
an antigenic signature as their external receptors whereas the
memory cells with long life spans will effectively drive the
immune system to a much faster response in future exposure
to the same or similar pathogen. During cellular reproduction
(cloning and proliferate), the cells suffer high rates of somatic
mutation (hyper-mutation). The process of somatic mutation
and clonal selection is known as aff nity maturation [1]. These
aforementioned hypothesis that form the building block of
a very complex natural immune system in order to defend
against pathogenic organisms, act as a source of inspiration
for solving optimization problems. As such, the Immune
Algorithm (IA) is a meta-heuristic which is developed based
on such a system. This paper aims to propose an immune
algorithm for solving FMSDS.

B. Proposed Improved Immune Algorithm (IIA)

In order to illustrate the proposed IIA procedures, the
overall f ows of the proposed IIA are depicted in Fig. 1. The
f rst procedures involve setting up the parameters where user-
def ned parameters such as population size (popN ), generation
number, and clonal selection percentage (Cr) are given with
an individual value. The procedure is then followed by the
initialization of the populations, population ranking, and clonal
selection, which details are described in Subsection III-B2. A
simple encoding during the initialization phase and greedy-
based decoding scheme during evaluation phase is conducted
where the detail regarding this encoding and decoding are
discussed in the following Subsection III-B1. After the clonal
selection phase, a set of individuals is selected from the total
population size where cloning is performed f rst, followed by
the somatic mutation (hyper-mutation) conducted on the cloned
individual. At this point, only the local mutation operators
are involved. Next, a receptor editing (global mutation) is
performed on one or more individuals of the population
based on a probabilistic scheme. Then, the best among cloned
individuals will be retained as an immune memory for the
remaining generation numbers (iterations). If the termination
condition (maximum generation number) is met, the proposed
IIA terminates.

1) Antibody Encoding and Decoding:Information encoded
in the antibody of the IIA for FMSDS has to specify the
allocation of each job to factory, the routing of every job
through machine, and the sequence of the operations. Basically,
this work reuses the simple operation-based encoding method
proposed in [7] for the distributed scheduling problems without
routing f exibility, where relevant extension that includes the
f exibility issues of the FMSDS is considered. The size of
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Immune 
Memory 

2nd Hyper-mutation

Fig. 1. Flowchart of proposed IIA

receptor (rp) in an antibody is equal to the total number
of operations of all the jobs. Every receptor is represented
with a triplet notation (f, i, p), which denotes the factory
(f), the assigned job (i), and the PM f ag (p). Note that all
the operations of the same job are represented by different
receptors within the same antibody, which interpret according
to the order of the receptor occurrence on the antibody, given
that the order for the operation of a job is f xed. Concerning the
adoption of the simple representation as per [7], no information
about alternative machine routes is explicitly encoded into
the receptor. This information will be retrieved during the
decoding phase. A sample individual is given in Fig. 2.

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

Fig. 2. A sample antibody encoding

Lets assume that job 1, job 2, and job 3 have two, two, and
three operations respectively so that an antibody consists of 7
receptors. Each receptor consists of three types: “2,1,< p >”,
“1,2,< p >”, and “1,3,< p >”, meaning that jobs N1 and N2

are processed in factory F1 and N3 is processed in factory F2.

The decoding process exploits the information provided by
each antibody in order to generate a schedule plan where the
aff nity of each individual is evaluated. The objective of the
FMSDS is to minimize the global makespan of the factory
network so that the aff nity of an individual is inversely related
to the global makespan.

As previously discussed, antibodies explicitly represent
information on job assignments to factories and the order of
the antibody’s receptor is relevant to determine the priority
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of each operation, with no information on job routing consid-
ered. Rather than complicating gene encoding, the f exibility
problem is considered in the decoding phase, where it can
dispatch job operations to one of the alternative machines of
the selected factory. The information on job routing is thus
implicitly conducted in the decoding process. Based on the
order determined by the antibody, operations are considered
sequentially. When the respective operation is dispatched to
a machine, the starting time equals the completion time of
the last operation assigned to the machine. If the consid-
ered operation requires more than one machine, the decoding
process selects the routing that guarantees the lowest current
local makespan where the one giving the lowest completion
time for the operations assigned so far is picked. However,
if different routings lead to the same current makespan, the
machine with the smallest processing time is chosen. If the
available machines have the same smallest current makespan
and processing time, any of them is selected at random,
to give the optimization algorithm the opportunity to search
different regions of the solution space. The decoding process
is completed by adding the delivery time (according to the
factory the job is assigned to) as soon as all the operations
have been scheduled, thus obtaining the local makespans and
the global one.

2) Population Initialization and Clonal Selection:The ini-
tial population is determined by three phases: the f rst phase
randomly generates jobs until all the operations of the jobs are
generated; the second phase randomly assigns jobs to factories
in which related operations of the respective jobs will be
amended to satisfy the factory allocation constraints; the third
and last phase generates the maintenance f ag at random. This
process repeats until all individuals of the population (popN )
are initialized.

During the clonal selection phase, a set of individuals from
the current population is chosen in order to apply IIA operators
and generate high aff nity memory cell(s) to include in the
next generation. Since the clonal selection is dependent on
the aff nity (makespan) of the antibody, a ranking strategy
is conducted by sorting the population by decreasing aff nity
(starting from the best to the worst individual). The Cr % of
the best population will be considered for cloning, in which
each of these cloned cells undergo aff nity maturation process,
whereas the rest of the population will be re-initialized with
the three phase initialization mechanism previously described.

3) Hyper-mutation Operators:In this study, the mutation
operators shares a coherent behaviours with Genetic Algorithm
(GA) where both have a mutation operator that either randomly
generates a string or a decimal, or randomly f ips a binary
digit of the individual. However, IIA mutation operator differs
in such, dependent on individual aff nity, inferior antibodies
mutate at a higher rate compared to superior antibodies. This
process is known as somatic mutation (hyper-mutation). To
comply to this requirement, the mutation operator is conducted
in a continuously loop in where the loop limit is calculated as
below:

Rm = Round{(1 −Apopn) ∗ popN} (3)

Rm is the mutation rate, Apopn
is the aff nity of the nth

population, and popN is the total population size. The somatic

mutation employed can be categorized into two; local and
global.

a) Local Mutation: The local mutation is involved
in exchanging information of the antibody’s receptor, which
is conducted on a single antibody when only routing of
the operations of jobs affected (local effects). This aims to
enhance the algorithms to better examine the search space.
Two types of local mutations operator are adopted, uniform
and exploration. The uniform mutation operator is where the
mutation is conducted repeatedly in the somatic mutation loop,
whereas the exploration mutation operator mutates based on
user-def ned probabilities within the somatic mutation loop.

Simple swapping mechanism (SSM) is a uniform local mu-
tation operator which randomly selects a pre-def ned number
of pair of receptors within a single antibody to permute their
positions (Fig. 3). However, an end-to-end swapping mech-
anism (EESM) is employed as an exploration local mutation
operator which exchanges f rst and last pairs of every receptors
within a single antibody to permute their positions (Fig. 3).
Note that every antibody explicitly encodes just the jobs.
However, exchanging the antibody’s receptor does not effect
the feasibility of scheduled routing of jobs.

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

1, 3, 0 1, 2, 1 2, 1, 0 1, 2, 0 2, 1, 11, 3, 01, 3, 1

Fig. 3. A simple swapping mechanism (SSM)

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

2,1,1 1,3,1 2, 1, 0 1,3,0 1,3,01,2,11,2,0

Exchange

Fig. 4. An end-to-end swapping mechanism (EESM)

b) Global Mutation: The global mutation involve ex-
changing information of the antibody’s receptor, which is
conducted on a single antibody at a time involving the factory
assignment of jobs and the maintenance f ag. This aims to ex-
plore more solutions of the search space with different assign-
ments of jobs to factories and varied scheduled maintenance.
Note that, in order to maintain consistency with the antibody’s
remaining receptors and meet the factory constraint, all the
receptors have to ref ect the new job assignments in which all
the receptors related to the selected job in the antibody have to
be updated (global effects). The updating process is conducted
on all antibodies after the last immune operator to maintain the
antibody’s feasibility (receptor editing).

Two types of global mutation considered (Fig. 5): random
factory assignment (RFA) and random scheduled maintenance
(RSM). Due to the signif cant impact global mutation has
on operation scheduling, it is applied at some iteration based
on certain probabilities, in order to let the algorithm explore
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solutions with a given job assignment before changing it. As
such, two additional parameters are def ned based on 4 and 5,
respectively: the probability of applying RFA mutation (Rg1)
and the probability of applying RSM mutation (Rg2), both
applied to every generation.

Rg1 = (1− Rm)/2 (4)

Rg2 = (1− Rm)/3 (5)

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

2, 3, 0 1, 2, 1 2, 1, 0 1, 2, 1 2, 1, 1

random factory assignment random scheduled maintenance

2, 3, 0 2, 3, 1

Legalization

Fig. 5. Global mutation: random factory assignment (RFA) and random
scheduled maintenance (RSM)

Rg1 is the mutation rate for RFA, Rg2 is the mutation rate
for RSM, and Rm is the mutation rate. As aforementioned
before, global mutation has signif cant impact on the operation
scheduling. Whenever a local mutation is not performed, the
global mutation is conducted with a reduced probability. For
RFA, the probability is reduced into half (divided by 2) while
the RSM probability is reduced by one over three ( 13 ). As such,
the global mutation will be applied to at least “some” of the
population’s individual. Note that Rm mutation rate is used
because of the global mutation is inversely proportional to the
individual’s aff nity.

IV. COMPUTATIONAL RESULTS

The performance of the IIA has been tested on several
instances. Four datasets were considered. The f rst, second,
and third datasets were obtained from Chan et al. [4], [25],
[26], whereas the fourth dataset obtained from Fisher and
Thompson’s benchmark data [27]. Two separate tests were
conducted. The f rst test used the f rst, second, and third
datasets whereas the second test used the fourth dataset. The
f rst test aims to compare IIA with other algorithms designed
for FMSDS, in particular, Ant Colony Optimization (ACO) by
Kumar et al. [28], Genetic Algorithm with Dominant Gene
(GADG) by Chan et al. [4], [25], [26], Modif ed Genetic
Algorithm with Dominant Gene (MGADG) by Chung et al.
[29], and Improved Genetic Algorithm (IGA) by De Giovanni
and Pezella [8]. The second test aims to compare IIA with
other algorithms that were conducted on the same dataset;
particularly, Modif ed Genetic Algorithm (MGA) by Jia et al.
[7] and Improved Genetic Algorithm (IGA) by De Giovanni
and Pezella [8]. IIA has been implemented in C# compiler and
run independently on a personal computer equipped with a 2.0
GHz Intel Core i5 processor and 2GB RAM.

All datasets considered in this study are summarized in
Table I. IIA parameters have been calibrated for the prelimi-
nary test on all datasets described above. The details of four
parameter option’s setting for each datasets considered are

TABLE I. DATASETS PARAMETERS/PROPERTIES

Data labels F Hf i Ni Reference
fjs01 1 3 5 4 [4], [25], [26]
fjs02 1 10 100 n.a. [25]

dfjs01a 2 3 10 4 [4], [29]
dfjs01b 2 3 10 4 [4], [29]
Mt06 1 6 6 6 [27]
Mt10 1 10 10 10 [27]
mt20 1 5 20 5 [27]

*a without maintenance integration, *b with maintenance integration
*n.a.: not available/no specif c numbers of operation (f exible)

TABLE II. IIA CONTROL PARAMETERS

Parameter fjs01,02 dfjs01(a) dfjs01(b) Mt06,10,20
Generation No. 500 100 5000 5000
Run No. 5 5 5 5
Hyper-mutation Rate (Rm) 0.05 0.1 0.15 0.3
Options No. 4 4 4 4

Based on Option: 1 2 3 4
Population Size (popN ) 50 75 150 300
Clonal Selection Rate (Cr ) 0.25 0.45 0.65 0.76

given in Table II. Results of the f rst and second test are given
in Fig. 6(a) and (b), respectively.

The results of IIA dominate other algorithms designed for
FMS, FMSDS, and even job shop (JS), by obtaining optimal
results for every datasets on both test cases considered in
this paper. Note that results of algorithms given as zero are
to denote that the algorithm consideration of the datasets is
unavailable. When comparing the iteration sizes (generations)
of IIA and IGA [8], IIA requires more to converge which
contradicts with IGA. However, the IIA results obtained are
better than all test instances of IGA. Moreover, consideration
of maintenance cases (included and excluded) of the FMSDS
are also able to obtain superior results with maximum numbers
of iteration (generations) as from Chan et al. [4], [25], [26].

Additionally, IIA considered various combinations of pa-
rameters. Determining the appropriate parameters give vital
effects on the solutions and probability reduction of premature
convergent. As such, identifying the appropriate parameter
combinations, by analyzing different combinations of param-
eters, specif cally the population size (popN ), clonal selection
rate (Cr), and hyper-mutation rate (Rm), is investigated. The
details of different parameter combination results are graph-
ically shown in Fig. 6(c). The Rm value used are 0.05, 0.1,
0.15, and 0.3, while Cr used 0.25, 0.45, 0.65, and 0.75. From
the overall view of Fig. 6(c), it can be concluded that higher
Cr produces better results, in which simultaneously combined
high number of popN , gives higher probability of achieving
an optimal result with small deviations. The best possible
parameter combinations suggested from Fig. 6(c) are Rm =
0.1, popN = 300, and Cr = 0.75.

Referring to the obtained results, the IIA relies solely on the
mutation operators as the evolutionary driver in order to obtain
(near-) optimal solution. Compared to other algorithms (i.e.
Genetic Algorithm), there is no crossover operator to maintain
population diversity. The top best individual of the population
are guaranteed being selected due to the ranking scheme, fol-
lowed by cloning for the following mutation process. However,
probable duplication is inevitable because of the high number
of selections. As such, by performing the global mutation
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operator, relative “tweaks” of individual population had been
achieved to maintain overall population diversity. Dispersion
effect is observed when the cloned individual undergoes global
mutation, where larger search space is covered in every gen-
eration and reduces the chance of trapping in a local optimum
by exploring neighboring areas of the search space. Every
individual population can develop at a consistent pace without
having competition between each others. In addition, decoding
scheme of the individual population during an evaluation
process had guaranteed that lower makespan will be chosen
at all time. Indirectly, the individual population can accelerate
their pace in achieving (near-) optimal solution, especially in
small dataset.

V. CONCLUSION AND FUTURE WORKS

In conclusion, this paper proposed the IIA approach in
solving FMSDS problem subject to machine maintenance. The
IIA parameters and operators have been presented whereas
compared with other algorithms in similar venture have been
conducted to justify IIA overall performance and optimization
capabilities. We summarize that IIA as a suitable alternative
for solving FMSDS problem subject to machine maintenance
under the following reasons:

1) IIA requires less iteration numbers, indirectly pro-
motes higher computational eff ciency to achieve
(near-) optimality.

2) The solution obtained is closer to other meta-heuristic
algorithms and capable of providing global optimum.

3) IIA promotes solution diversity and faster solution
evaluation due to a simplif ed solution modeling
scheme.

4) Greedy decoding scheme always guarantees a supe-
rior solution selection rather than the inferior one.

Best results obtained prove to be an encouragement to
further extend this work to a more complex and challenging
environment. Nevertheless, the datasets are obtained from
literature and benchmarks, merely serve as an abstraction
of a real world manufacturing problem that is substantially
more complex and diff cult to apprehend. As such, achieving
conceivable results which satisfy the actual manufacturing
problem still far from reality and actual implementation. The
applicability of IIA on FMSDS problem subject to machine
maintenance has considerable potential with further ref nement
on a specif c aspect which outlined as following:

1) Due to the stochastic nature of IIA, an extension
with an artif cial neural-network is possible in order
to specify system-specif c parameters or operating
strategies in an FMSDS environment.

2) Considering rescheduling strategies incorporated in
IIA to improve solution quality as well as the system
state in a real-time operation, in order to enhance
productivity.

3) Coupling IIA with an eff cient machine maintenance
strategy can improve solution reliability and quality.

4) Simulating the worst-case scenarios (i.e. machine
breakdown) could be done to further test IIA capa-
bilities in machine maintenance environment.

5) Developing a systematic methodology in order to
add values on the main IIA operators specif c to the
scheduling problem, such as the somatic mutation.

6) Inclusion of other hardware elements of the manu-
facturing system to make the scheduling task as an
integrated one.
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